OMEGA SUBGROUPS OF POWERFUL p-GROUPS

Β¥

Gustavo A. Fernández-Alcober*

Matematika Saila, Euskal Herriko Unibertsitatea 48080 Bilbao, Spain e-mail: qustavo.fernandez@ehu.es

ABSTRACT

Let G be a powerful finite p-group. In this note, we give a short elementary proof of the following facts for all $i \geq 0$: (i) $\exp \Omega_i(G) \leq p^i$ for odd p, and $\exp \Omega_i(G) \leq 2^{i+1}$ for p=2; (ii) the index $|G:G^{p^i}|$ coincides with the number of elements of G of order at most p^i .

Let G be a finite p-group. For every $i \geq 0$, denote by $\Omega_{\{i\}}(G)$ the set of elements of G of order at most p^i , and let $\Omega_i(G)$ be the subgroup it generates. On some occasions, $\Omega_i(G)$ coincides with $\Omega_{\{i\}}(G)$, in other words, the exponent of $\Omega_i(G)$ is at most p^i . This happens, of course, for abelian groups, and also for powerful p-groups if p is odd, as shown by L. Wilson in [6]. In his Ph.D. Thesis [5], Wilson also obtained that $\exp \Omega_i(G) \leq 2^{i+1}$ for p=2, which is best possible. On the other hand, Héthelyi and Lévai [3] have proved that $|G:G^{p^i}|=|\Omega_{\{i\}}(G)|$ for all powerful p-groups. These properties of powerful p-groups have been generalized by González-Sánchez and Jaikin-Zapirain [2] to normal subgroups lying inside G^2 .

The aim of this note is to provide a short direct proof of the results of Wilson and Héthelyi–Lévai. The proof is completely elementary and only uses basic properties of powerful p-groups (as can be found in Chapter 2 of [1] or Chapter 11 of [4]), and the following version of Hall's collection formula: if x and y are elements of a group G, p is a prime and $n \in \mathbb{N}$, then

$$(xy)^{p^n} \equiv x^{p^n}y^{p^n} \pmod{\gamma_2(H)^{p^n}\gamma_p(H)^{p^{n-1}}\cdots\gamma_{p^n}(H)}$$

Received November 29, 2006

^{*} Supported by the Spanish Ministry of Science and Education, grant MTM2004-04665, partly with FEDER funds, and by the University of the Basque Country, grant UPV05/99.

and

$$[x,y]^{p^n} \equiv [x^{p^n},y] \pmod{\gamma_2(K)^{p^n} \gamma_p(K)^{p^{n-1}} \cdots \gamma_{p^n}(K)},$$

where $H = \langle x, y \rangle$ and $K = \langle x, [x, y] \rangle$.

It is convenient to make the following convention in order to write our results more easily: if G is a p-group and $x \in G$, let us define the meaning of the inequality $o(x) \leq p^i$ with i < 0 (which is actually impossible to hold) to be that x = 1. Define accordingly $\Omega_i(G) = \Omega_{\{i\}}(G) = 1$ for all i < 0, which is coherent with the definition given for $i \geq 0$.

THEOREM 1: Let G be a powerful p-group. Then, for every $i \geq 0$:

- (i) If $x, y \in G$ and $o(y) \le p^i$, then $o([x, y]) \le p^i$.
- (ii) If $x, y \in G$ are such that $o(x) \leq p^{i+1}$ and $o(y) \leq p^i$, then $o([x^{p^j}, y^{p^k}]) \leq p^{i-j-k}$ for all $j, k \geq 0$.
- (iii) If p is odd, then $\exp \Omega_i(G) \leq p^i$.
- (iv) If p = 2, then $\exp \Omega_i(T) \leq 2^i$ for any subgroup T of G which is cyclic over G^2 . In particular, $\exp \Omega_i(G^2) \leq 2^i$.

Proof: We apply induction on the order of G globally to all the assertions of the theorem. Thus we prove that (i) through (iv) hold for a group G under the assumption that they hold for all powerful groups of smaller order. Of course, we may suppose that G is non-cyclic.

- (i) The commutator $[x, y] = (y^{-1})^x y$ is a product of two elements of order $\leq p^i$ in the subgroup $T = \langle y, G' \rangle$. If p is odd, then T is a proper powerful subgroup of G, by Lemma 11.7 of [4]. If p = 2, then $H = \langle y, G^2 \rangle$ is also powerful and proper in G, and T is a subgroup of H that is cyclic over H^2 . Since (iii) and (iv) hold for powerful groups of order smaller than that of G, the result follows.
- (ii) In this case, we also apply reverse induction on i. If we write $\exp G = p^e$, then the result is clear for $i \geq e$: just note that $[x^{p^j}, y^{p^k}] = g^{p^{j+k}}$ for some $g \in G$, since G is powerful. Suppose now that i < e and put $T = \langle x, [x, y^{p^k}] \rangle$. By Hall's collection formula,

(1)
$$[x^{p^j}, y^{p^k}] \equiv [x, y^{p^k}]^{p^j} \pmod{\gamma_2(T)^{p^j} \gamma_p(T)^{p^{j-1}} \cdots \gamma_{p^j}(T)}.$$

Since $o([x,y^{p^k}]) \leq o(y^{p^k}) \leq p^{i-k}$, it follows that $[x,y^{p^k}]^{p^j} \in \Omega_{i-j-k}(T)$. Note that, arguing as in the last paragraph, the induction on the group order yields that $\exp\Omega_n(T) \leq p^n$ for all n. (In particular $\exp T \leq p^{i+1}$.) Thus if we prove that all the subgroups appearing in the modulus of congruence (1) lie in $\Omega_{i-j-k}(T)$, then we can conclude that the order of $[x^{p^j},y^{p^k}]$ is at most p^{i-j-k} , as desired.

First, since $\gamma_2(T) = \langle [x,y^{p^k},x] \rangle^T \leq \Omega_{i-k}(T)$, we get $\gamma_2(T)^{p^j} \leq \Omega_{i-j-k}(T)$. Let us now prove, by induction on r, that $\gamma_{r+2}(T) \leq \Omega_{i-k-r}(T)$ for all $r \geq 0$. We have just seen this for r=0. In the general case, it suffices to show that if $a \in \gamma_{r+1}(T)$ and $b \in T$ then $o([a,b]) \leq p^{i-k-r}$. Since $\gamma_{r+1}(T) \leq \Omega_{i-k-r+1}(T)$, we know that $o(a) \leq p^{i-k-r+1}$. On the other hand, $a \in \gamma_{r+1}(T) \leq [G^{p^k}, G, r; \cdot]$, G and G being powerful imply that $a = g^{p^{k+r+1}}$ for some $g \in G$, and then $o(g) \leq p^{i+2}$. But $b \in T$ has order $\leq p^{i+1}$, so the reverse induction on i we are applying yields that $o([a,b]) = o([g^{p^{k+r+1}},b]) \leq p^{i-k-r}$.

Now if either p is odd and $r \geq 1$ or if p = 2 and $r \geq 2$, we have $\gamma_{p^r}(T) \leq \gamma_{r+2}(T)$, and consequently $\gamma_{p^r}(T)^{p^{j-r}} \leq \Omega_{i-j-k}(T)$. Thus we only have to check that $\gamma_2(T)^{2^{j-1}} \leq \Omega_{i-j-k}(T)$ for p = 2. This follows by observing that $[x,y^{2^k},x]=[g^{2^{k+2}},x]$ for some g of order $\leq 2^{i+2}$ and hence, by the reverse induction on i, this commutator has order at most 2^{i-k-1} .

- (iii) Let $x,y,z\in G$ be elements of order p. Then $[x,y]=g^p$ for some g of order at most p^2 , and it follows from (ii) that [x,y,z]=1. Hence the nilpotency class of $\Omega_1(G)$ is at most 2. Since p is odd, $\Omega_1(G)$ is then regular and $\exp\Omega_1(G)\leq p$. For the general case, by the induction on the group order, we get $\exp\Omega_{i-1}(G/\Omega_1(G))\leq p^{i-1}$. This, together with $\exp\Omega_1(G)\leq p$, yields that $\exp\Omega_1(G)\leq p^i$.
- (iv) As in (iii), it is enough to prove that $\exp\Omega_1(T) \leq 2$. (We need $T \leq G$ in order to apply the induction hypothesis to $G/\Omega_1(T)$, but this is not a problem, since we may assume $G^2 \leq T$.) For this purpose, we are going to see that $\Omega_1(T)$ is abelian, that is, that any two elements $a,b \in T$ of order 2 commute. If either a or b lie in G^2 , this is a consequence of (ii), so we suppose that $a,b \in \Omega_1(T) \setminus G^2$. Since T is cyclic over G^2 , it follows that b = av for some $v \in G^2$, and we have to prove that a and v commute. Now $v^2 = (ab)^2 = [b,a] = [v,a] \in G^8$, so there exists $u \in G^4$ such that $u^2 = v^2$. We also deduce that v^2 has order at most 2, whence $o(u) = o(v) \leq 4$. It is then a consequence of (ii) that u and v commute. Put $w = v^{-1}u \in G^2$. Since $w^2 = 1$ it follows again from (ii) that w commutes with a and, of course, it also commutes with v. Hence $(au)^2 = (avw)^2 = (av)^2 = 1$ and, since $a, au \in \langle a, G^4 \rangle$, we may apply the induction on the group order to deduce that a and au commute. Since au = avw we conclude that a commutes with v, as desired.

COROLLARY 2: Let G be a powerful 2-group. Then:

- (i) $\exp[\Omega_i(G), G] \leq 2^i$.
- (ii) $\exp \Omega_i(G) \leq 2^{i+1}$.

- *Proof:* (i) By part (i) of Theorem 1, $[\Omega_i(G), G]$ can be generated by elements of order at most 2^i . Since G is powerful, it follows that $[\Omega_i(G), G] \leq \Omega_i(G^2)$, and then we only have to apply part (iv) of Theorem 1.
- (ii) As observed above, we have $[\Omega_i(G), G] \leq \Omega_i(G^2)$, and consequently the factor group $\Omega_i(G)/\Omega_i(G^2)$ is abelian. But this group can be generated by elements of order at most 2, hence its exponent is also at most 2. Since $\exp \Omega_i(G^2) \leq 2^i$, we conclude that $\exp \Omega_i(G) \leq 2^{i+1}$.

Some other properties of omega subgroups of powerful p-groups can be immediately deduced from Theorem 1, and their proof is left to the reader. For example, that for odd p the subgroup $\Omega_1(G^p)$ is powerful and that $\exp \gamma_{r+2}(\Omega_i(G)) \le p^{i-r}$ for all $r \ge 0$. In particular, the nilpotency class of $\Omega_i(G)$ is at most i+1 for p > 2.

Finally, we prove the result of Héthelyi and Lévai. We need the following lemma, which is an immediate consequence of Hall's collection formula.

LEMMA 3: Let G be a powerful p-group of exponent p^e . Then for every $0 \le i \le e-1$, and every $x \in G$, $y \in G^{p^{e^{-i-1}}}$, we have $(xy)^{p^i} = x^{p^i}y^{p^i}$.

THEOREM 4: Let G be a powerful p-group. Then $|G:G^{p^i}|=|\Omega_{\{i\}}(G)|$ for all $i\geq 0$.

Proof: We argue by induction on the group order. Let $\exp G = p^e$. We only need to consider the case when $i \leq e-1$. On the other hand, by the previous lemma, the map $x \mapsto x^{p^{e-1}}$ is a homomorphism from G onto $G^{p^{e-1}}$, and by the first isomorphism theorem, $|\Omega_{\{e-1\}}(G)| = |G:G^{p^{e-1}}|$.

So we assume in the remainder that $i \leq e-2$. Set $\overline{G} = G/G^{p^{e-1}}$. By the induction hypothesis, $|G:G^{p^i}| = |\overline{G}:\overline{G}^{p^i}| = |\Omega_{\{i\}}(\overline{G})|$. Hence if $X = \{x \in G \mid x^{p^i} \in G^{p^{e-1}}\}$ then $|G:G^{p^i}| = |X|/|G^{p^{e-1}}|$. Thus it suffices to prove that $|X| = |\Omega_{\{i\}}(G)||G^{p^{e-1}}|$.

Note that $x \in X$ if and only if there exists $y \in G^{p^{e-i-1}}$ such that $x^{p^i} = y^{p^i}$ and, by the previous lemma, this is equivalent to $xy^{-1} \in \Omega_{\{i\}}(G)$. Thus $X = \Omega_{\{i\}}(G)G^{p^{e-i-1}}$ is the union of all the cosets of elements of $\Omega_{\{i\}}(G)$ with respect to the subgroup $G^{p^{e-i-1}}$, and in order to get the cardinality of X we have to find out how many different cosets of that kind there are. Let $gG^{p^{e-i-1}}$ be a coset with $g \in \Omega_{\{i\}}(G)$. Again by the lemma, the elements of order at most p^i in that coset are exactly those in $g(\Omega_{\{i\}}(G) \cap G^{p^{e-i-1}}) = g\Omega_{\{i\}}(G^{p^{e-i-1}})$, so their number is $|\Omega_{\{i\}}(G^{p^{e-i-1}})|$, which is independent of the choice of g. In other words, the elements of $\Omega_{\{i\}}(G)$ are evenly distributed in the different cosets

with respect to the subgroup $G^{p^{e-i-1}}$. Hence the number of cosets we wanted is $|\Omega_{\{i\}}(G)|/|\Omega_{\{i\}}(G^{p^{e-i-1}})|$ and

(2)
$$|X| = \frac{|\Omega_{\{i\}}(G)|}{|\Omega_{\{i\}}(G^{p^{e-i-1}})|} |G^{p^{e-i-1}}|.$$

Finally, since $i \leq e-2$, it follows that $G^{p^{e-i-1}}$ is a proper powerful subgroup of G. By the induction hypothesis, we have $|\Omega_{\{i\}}(G^{p^{e-i-1}})| = |G^{p^{e-i-1}}:G^{p^{e-1}}|$, and we get from (2) that $|X| = |\Omega_{\{i\}}(G)||G^{p^{e-1}}|$, as desired.

References

- J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p groups, 2nd edition, Cambridge University Press, Cambridge, 1999.
- J. González-Sánchez and A. Jaikin-Zapirain, On the structure of normal subgroups of potent p-groups, Journal of Algebra 276 (2004), 193–209.
- [3] L. Héthelyi and L. Lévai, On elements of order p in powerful p-groups, Journal of Algebra **270** (2003), 1–6.
- [4] E. I. Khukhro, p-Automorphisms of finite p-groups, Cambridge University Press, Cambridge, 1998.
- [5] L. Wilson, Powerful groups of prime power order, Ph.D. Thesis, University of Chicago, 2002.
- [6] L. Wilson, On the power structure of powerful p-groups, Journal of Group Theory 5 (2002), 129–144.